
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 326 (2009) 894–908
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
A novel method for machine performance degradation assessment
based on fixed cycle features test
Linxia Liao �, Jay Lee

NSF I/UCR Center for Intelligent Maintenance Systems, Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
a r t i c l e i n f o

Article history:

Received 16 October 2008

Received in revised form

26 January 2009

Accepted 2 May 2009

Handling Editor: J. Lam
Available online 30 May 2009
0X/$ - see front matter & 2009 Elsevier Ltd.

016/j.jsv.2009.05.005

responding author. Tel.: +1513 556 3820; fax:

ail address: liaol@email.uc.edu (L. Liao).
a b s t r a c t

This paper presents a novel machine performance degradation scheme based on fixed

cycle features test (FCFT). Instead of monitoring the machine under constant working

load, FCFT introduces a new testing method which obtains data during the transient

periods of different working loads. A novel performance assessment method based on

those transient data without failure history is proposed. Wavelet packet analysis (WPA)

is applied to extract features which capture the dynamic characteristics from the non-

stationary vibration data. Principal component analysis (PCA) is used to reduce the

dimension of the feature space. Gaussian mixture model (GMM) is utilized to

approximate the density distribution of the lower-dimensional feature space which

consists of the major principal components. The performance index of the machine is

calculated based on the overlap between the distribution of the baseline feature space

and that of the testing feature space. Bayesian information criterion (BIC) is used to

determine the number of mixtures for the GMM and a density boosting method is

applied to achieve better accuracy of the distribution estimation. A case study for a

chiller system performance assessment is used as an example to validate the

effectiveness of the proposed method.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Maintenance is usually carried out when failures are serious or have been already occurred in many manufacturing
plants, which leads to a plenty of unexpected downtime and correspondingly high maintenance cost. Condition-based
maintenance (CBM) has been implemented in most production systems, where certain performance indices are
periodically or continuously monitored [1]. The problem is that there is lack of capabilities to convert machinery data into
valuable information in order to guide the maintenance practitioners to make right maintenance decisions before the
failure happens. For complex or crucial systems, there is no (or rarely) failure mode to follow, which makes it hard to obtain
the performance index for the whole system from each monitored parameter. Even if the independent analysis can be
carried out for individual parameters, there is always lack of consideration of interactions among components of the whole
system. Therefore, robust machine performance assessment methods become a necessity to evaluate of the performance of
the entire system and trigger an alarm before serious failure happens.

Some researchers have built physical models for fault detection and diagnosis (FDD) for special systems like chiller
systems [2]. Those kinds of methods have been proved effective in some special cases, while it is always not practical when
the accurate knowledge for the whole system is inadequate. Moreover, it is not easy to apply the same model to other
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equipment, and usually significant modification to the model is involved. In literature, lots of data-driven methods, which
do not incorporate any system knowledge, have been proposed for machine fault detection and diagnosis. For example,
logistic regression was used for elevator system degradation detection [3], support vector machine was proposed in [4] to
motor system diagnosis, artificial neural network was used in chiller fault detection and diagnosis in [5], and hidden
Markov model was considered in [6] to be applied to the tool wear monitoring tasks and so on. To apply those supervised
learning methods, measurements from both normal condition and faulty condition are required. Those methods are not
feasible when data in the faulty condition is not available, which is usually the case for critical equipment. Some statistical
methods [7,8] and unsupervised learning methods like self-organizing maps [9] were proposed for machine faults
detection and diagnosis. Those methods have their advantages, but measurements are usually taken when the machine is
running only under the fixed working load and failure is usually detected when it has already happened. Some examples
using the data under the fixed working load can be found in the literature such as ball bearing race fault detection [10],
faults diagnosis for induction motor [11] and chiller faults diagnosis [12] and so on. To find an effective way to detect the
incipient faults, wavelet analysis was proposed to detect initial bearing defects in [13] and multivariate statistics were
applied to detect incipient defects of gears in [14]. Those methods are developed for specific components and it is hard to
apply them for other components or systems. Also, the assumption for normal or nearly normal distribution is necessary
for those statistical methods [15], which significantly limits the scope of the applications especially for dynamic processes.
Gaussian mixture model (GMM) was proposed in [16] for dynamic process monitoring, while the problem that the
expectation–maximization (EM) algorithm may easily converge to a local maximum [17] was not taken care of
appropriately in many cases.

This paper proposes a novel method for machine performance degradation assessment based on a fixed cycle features
test (FCFT), which identifies the system behaviors and incipient component failure by monitoring the transient periods
between different working loads. Only measurement in normal operating condition of the machine is necessary. There is no
normal distribution assumption requirement for the proposed performance assessment method. The paper is organized as
follows: Section 2 introduces the proposed FCFT test and the method for machine performance degradation assessment.
Section 3 illustrates an industrial case of chiller system to validate the effectiveness of the proposed method. Finally, the
paper concludes with a discussion of future research in Section 4.

2. Methodology

2.1. A scheme of performance degradation assessment based on fixed cycle features test

The proposed new testing method is called fixed cycle features test. The purpose of FCFT is to identify the system
behaviors by monitoring the transient period between different working loads. In general, FCFT includes the following
three steps:
(1)
 Find out the possible spectrum of working loads (such as 100, 75 and 50 percent working load and so on).

(2)
 In one cycle test, let the system work through all of the possible working conditions with different loads and collect

data during the test.

(3)
 Repeat the test cycles: the timing of various loads in all of the cycles should be approximately identical.
A general scheme of FCFT is illustrated in Fig. 1. FCFT is focusing on the signals in the transient periods during the changes
of the working load. Data obtained at three transient periods, which are T1 (working load changes from 25 to 50 percent),
T2 (working load changes from 50 to 75 percent working load) and T3 (working load changes from 75 to 100 percent), are
used as input signals for the performance assessment models in the next step. A FCFT baseline (under normal operation)
needs to be set up first and the performance index is calculated based on the overlap between the recent machine behavior
and the baseline. The proposed method for performance degradation assessment based on these data obtained in the FCFT
test is shown in Fig. 2.

After the raw data is obtained from the FCFT, signal processing and feature extraction algorithms are used to decompose
the multi-sensory data into a feature space which is related to the performance of the machine. Because the FCFT is
interested in the signals during the transient period, wavelet packet analysis (WPA), which can capture the dynamic
characteristics of the vibration data, is an appropriate algorithm to extract features. If the extracted feature space is in high
dimension, principal component analysis (PCA) can be applied to reduce the dimension of the feature space. Gaussian
mixture models are then built to approximate the distribution of the feature space. The performance index is evaluated by
calculating the overlap between the most recent obtained feature space and the feature space during the normal operation
(baseline). This overlap is continuously transformed into a confidence value (CV), following [18], ranging from 0 to 1 (which
indicates abnormal and normal, respectively) over time. The CV evaluates the deviation of the recent behavior from the
normal behavior or baseline, which is a quantitative measure of the machine degradation. The FCFT is first carried out
during the normal condition and the data obtained in this process is used as the baseline. After the baseline is set up, the CV
can be calculated to indicate the performance degradation of the machine. Furthermore, a boosting method based on GMM
is used to increase the accuracy of density estimation. Bayesian information criterion (BIC) is utilized to find the
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Fig. 2. The performance degradation assessment method based on FCFT.

Fig. 1. Fixed cycle features test.
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appropriate number of mixtures for GMM. The following part of this section presents the mathematical background of the
aforementioned algorithms to assess the machine performance degradation in detail.
2.2. Signal processing by wavelet packet analysis and principal component analysis

2.2.1. Wavelet packet analysis

WPA provides a powerful method to deal with non-stationary signal in FCFT. It is an appropriate algorithm for feature
extraction in the case, because the vibration signals in the transient period are of our interest. For sustained defects,
Fourier-based analysis, which uses sinusoidal functions as base functions, provides an ideal candidate for extraction of
these narrow-band signals. For intermittent defects, signals often demonstrate a non-stationary and transient nature.
Wavelet packet transform, using a rich library of redundant bases with arbitrary time–frequency resolution, enables the
extraction of features from signals that combine non-stationary and stationary characteristics [19]. WPA is an extension of
the wavelet transform (WT) which provides complete level-by-level decomposition [20]. The wavelet packets are particular
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linear combinations of wavelet [21]. The wavelet packets inherit properties such as orthogonality, smoothness and
time–frequency localization from their corresponding wavelet functions.

Ci
j;kðtÞ is a wavelet packet function with three integer indices i, j and k which are the modulation or oscillation

parameter, the scale parameter, and the translation parameter, respectively.

Ci
j;kðtÞ ¼ 2j=2Ci

ð2jt � kÞ. (1)

When i ¼ j ¼ k ¼ 0, C0
0;0ðtÞ ¼ jðtÞ is called the scaling function. The first wavelet is the so-called mother wavelet

(when i ¼ 1, j ¼ k ¼ 0, C1
0;0ðtÞ ¼ cðtÞ) or analyzing wavelet. In this application, Daubechies wavelet [22] 4 (DB4, shown in

Fig. 3), which is a kind of compactly supported wavelets, is used as the mother wavelet.
The following wavelets Ci for i ¼ 2, 3,y are obtained from the following recursive relationships:

C2i
ðtÞ ¼

ffiffiffi
2
p X1

k¼�1

hðkÞCi
ð2t � kÞ, (2)

C2iþ1
ðtÞ ¼

ffiffiffi
2
p X1

k¼�1

gðkÞCi
ð2t � kÞ, (3)

where hðkÞ ¼ 1=
ffiffiffi
2
p
hjðtÞ;jð2t � kÞi and gðkÞ ¼ 1=

ffiffiffi
2
p
hcðtÞ;cð2t � kÞi (h�; �i stands for the inner product operator) are the

quadrature mirror filters (QMF) associated with the predefined scaling function and the mother wavelet function. The
wavelet packet coefficients of a signal f can be computed by taking the inner product of the signal and the wavelet packet
function:

ci
j;k ¼ hf ;C

i
j;kðtÞi ¼

Z 1
�1

f ðtÞCi
j;kðtÞdt. (4)

The wavelet packet node energy ej;k is defined as

ej;k ¼
X

k

ðci
j;kÞ

2. (5)

The energies of the nodes are used as the input feature space for next step—performance assessment.

2.2.2. Principal component analysis

Principal component analysis is one of the most commonly used statistical methods for reducing dimensionality by
transforming the original features into a new set of uncorrelated features. Karhunen–Loève transform (KLT) is a linear
dimensionality selection procedure that is related to PCA. The goal is to transform a given dataset X of dimension Q1 to an
alternative dataset Y of smaller dimension Q2 in the way that is optimal in a sum-squared error sense [23]. Equivalently, it
is seeking to find the matrix Y which is the Karhunen–Loève transform of matrix X:

Y ¼ ATX, (6)

where AT is the Karhunen–Loève transform matrix. By choosing the eigenvectors corresponding to the Q2 largest
eigenvalues of the correlation matrix of X, the mean square error (MSE) between the input X and its projection X0 is
minimized.
Fig. 3. DB4 wavelet.
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2.3. Performance assessment by Gaussian mixture model

Performance assessment by using machine learning algorithms can be separated into two categories (supervised
learning and unsupervised learning) by different learning behaviors. In supervised learning, the labels of the data (both
normal and abnormal) need to be explicitly used in the model, while the labels of the data are not necessary in
unsupervised learning. In FCFT, only the normal condition data (baseline) is available, so an unsupervised learning method
should be applied. GMM is an unsupervised learning method which is used to estimate the density distributions of the
feature space. GMM consists of a number of Gaussian functions which are combined to provide a multivariate density.
Mixtures of Gaussians can be utilized to approximate an arbitrary distribution within an arbitrary accuracy [24]. The
mathematic model of GMM is described as

f ðxÞ ¼
X
m

pmNormðmm;SmÞ, (7)

where pm are the weights for the mth mixture and Normðmm;SmÞ (Eq. (16)) denotes a multivariate Gaussian distribution
with mean vector mm and covariance matrix Sm. If the number of the mixtures is known, expectation–maximization
algorithm [23] is usually used to find the proper parameters for the GMM based on the observed dataset.

2.3.1. Determine the number of mixtures by BIC

An obvious problem still remains that is how to choose the appropriate number of mixtures for the GMM. Bayesian
model comparison calculates the posterior probabilities by using the full information over the priors. The evidence for a
particular hypothesis is calculated by

PðDjhiÞ ¼

Z
pðDjy;hiÞpðyjD;hiÞdy, (8)

where y is defined as the parameters in the candidate model hi. D represents the training dataset. For globally identifiable
cases [25], Eq. (8) can be approximated as

PðDjhiÞ � PðDjŷ;hiÞpðŷjhiÞDy, (9)

where ŷ is the optimal parameter assumed to maximize pðyjD;hiÞ, PðDjŷ;hiÞ is the best-fit likelihood and pðŷjhiÞDy is the
Occam factor [23]. If y is k-dimensional and the posterior can be assumed to be a Gaussian, then the Occam factor can be
approximated directly and yields [23]

PðDjhiÞ � PðDjŷ;hiÞpðŷjhiÞð2pÞk=2jHj�1=2, (10)

where

H ¼
q2 ln pðyjD;hiÞ

qy2
(11)

is a Hessian matrix and measures how ‘‘peaked’’ the posterior is around the value ŷ.
Bayesian information criterion [26] defines a log likelihood function and a penalty term as a criterion for model

selection. The BIC score can be calculated by

BICðhijDÞ ¼ log PðDjŷ;hiÞ �
d

2
log N, (12)

where d represents the number of parameters in hi and N is the size of dataset. For large N, the BIC agrees with the leading
order terms in the logarithm of the evidence ðPðDjhiÞÞ and so in this case it is equivalent to the Bayesian approach using
equal priors for all of the PðhiÞ [27] (PðhiÞ is a subjective prior for model hi). The candidate model which has the largest BIC
score will be selected as the best model.

2.3.2. Density boosting of GMM

Furthermore, a boosting method based on GMM is used to approximate the density distribution with higher accuracy.
Boosting is an algorithm aiming at improving the accuracy of any given learning algorithm or classifiers. In boosting, a weak
learner with accuracy on the training set just greater than random guess is first created, and then new component
classifiers are added to form an ensemble with high accuracy on the training set by a weighted decision rule. Freund and
Shapire’s Adaboost algorithm [28] proposed a method to continuously add weak learners until some desired low training
error is achieved. In Adaboost, each training pattern is assigned a weight which determines the probability of being
selected. If the training pattern is correctly classified, the chance of being selected in the subsequence component classifier
is reduced. If the training pattern is not correctly classified, the chance of being selected in the subsequence component
classifier is increased. Patterns are chosen according to the new distribution to train the next classifier and the process is
iterated. One issue in Adaboost is that the training error is dependent on the labels of the training patterns, while in this
case it is unsupervised learning in which the labels are not available. A gradient boosting methodology to the unsupervised
learning problem of density estimation method was proposed in [29]. The main idea is to identify the coefficients and
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parameters of the weak learner which gives the largest local improvement at each iteration step in the data log likelihood
(DLL) criterion which is defined as

DLL ¼ log
XT

t¼1

athtðxÞ, (13)

where T is the number of weak learners, x is the training dataset and at is the coefficient for each weak learner htðxÞ. In this
case, BIC is used as a criterion to choose the number of mixtures for weak learners, which is described in Section 2.3.1. In
[30], a GMM boosting method was proposed, but how to select appropriate number of mixtures was not well addressed for
unknown structure of data. Another boosting GMM was introduced in [31], in which BIC was used to determine the number
of mixtures for the GMM model. However, the number of mixtures should not be defined at the very beginning of the
boosting procedure, since the sampled dataset will change according to the weights of the dataset at each iteration step.
Besides, the expectation–maximization algorithm, which is utilized to estimate the parameters for GMM, is sensitive to the
initial parameters and it probably converges to a local minimum. To address the aforementioned problems, the proposed
GMM boosting algorithm is summarized as follows.

Definition of terms in the description of the proposed algorithm:

N size of the dataset;
i index of data samples, 1 � i � N;
xi ith data sample in the domain of x;
t current iteration step;
ht candidate GMM model at iteration step t;
Lt boosting GMM model at iteration step t;
at coefficient at iteration step t;
Tmax maximum number of iteration steps of the boosting algorithm;
Kmax maximum number of iteration steps for the EM algorithm;
Mmax maximum number of mixtures of the GMM;
Qmax maximum allowed number of steps if the performance does not improve (log data likelihood changes less than

10�5 comparing to the previous step is considered that the performance does not improve);
ŷðk�1Þ estimated parameters of a GMM at iteration step k� 1. ðk� 1Þ in the subscript denotes the parameter(s) at

iteration step k� 1 in the discussion here. The same notation is also used for p̂m; m̂m and Ŝm, which are the
estimated parameters in Eq. (15). E.g. p̂mð1Þ denotes estimated p̂m value at iteration step 1. m ¼ 1;2; . . . ;M. M is the
number of mixtures and M � Mmax.

The sequence of the algorithm is as follows:
1
 Begin initialize L0ðxiÞ to be uniform on the domain of x and set the maximum number of iteration steps Tmax and the
maximum iteration steps Kmax for EM. Set the maximum number of mixtures of the GMM as Mmax and set the stop
criterion Qmax.
2
 t’0

3
 do t’t+1

4
 Set

wi ¼ 1=Lt�1ðxiÞ (14)
5
 Sample the dataset x according to wi
6
 M’0

7
 do M’M+1

8
 Use EM to estimate the parameters of a GMM model ht with M mixtures by the sampled dataset x,
where

ht ¼
XM
m¼1

pmNormðmm;SmÞ (15)

and

Normðmm;SmÞ ¼
1

ð2pÞq=2jSmj
1=2

e�1=2ðx�mmÞ
0S�1

m ðx�mmÞ, (16)

where q is the dimension of the sampled dataset.
(i)
 k’0, initialize parameters p̂mð0Þ; m̂mð0Þ and Ŝmð0Þ for all mixture components
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(ii)
 do k’k+1

(iii)
 p̂mðkÞ ¼

1

N

XN
i¼1

p̂ðomjxi; ŷðk�1ÞÞ, (17)

where om denotes mixture component m, m ¼ 1;2; . . . ;M.

m̂mðkÞ ¼

PN
i¼1p̂ðomjxi; ŷðk�1ÞÞxiPN
i¼1p̂ðomjxi; ŷðk�1ÞÞ

(18)

ŜmðkÞ ¼

PN
i¼1p̂ðomjxi; ŷðk�1ÞÞðxi � m̂mðk�1ÞÞðxi � m̂mðk�1ÞÞ

0

PN
i¼1p̂ðomjxi; ŷðk�1ÞÞ

, (19)

where

p̂ðomjxi; ŷðk�1ÞÞ ¼
pðxijom; ŷmðk�1ÞÞp̂mðk�1ÞPM
c¼1pðxijoc; ŷcðk�1ÞÞp̂cðk�1Þ

¼
jŜmðk�1Þj

�1=2 exp � 1
2 ðxi � m̂mðk�1ÞÞ

0ðŜmðk�1ÞÞ
�1ðxi � m̂mðk�1ÞÞ

� �
p̂mðk�1ÞPM

c¼1jŜcðk�1Þj
�1=2 exp � 1

2 ðxi � m̂cðk�1ÞÞ
0ðŜcðk�1ÞÞ

�1ðxi � m̂cðk�1ÞÞ

� �
p̂cðk�1Þ

(20)
(iv)
 until k ¼ Kmax

until M ¼ Mmax
9
 Use the BIC score to determine the best model htP

10
 If iwihtðxiÞoN [29] break, N is the size of dataset

11
 Using line search method to find

at ¼ arg mina
X

i

� logðð1� aÞLt�1ðxiÞ þ ahtðxiÞÞ (21)
12
 Set

Lt ¼ ð1� atÞLt�1 þ atht (22)
13
 until t ¼ Tmaxor logðLtðxiÞÞ � logðLt�1ðxiÞÞo10�5 for Qmax steps

14
 return Lt
15
 end
2.3.3. Confidence value/performance index calculation

After the distributions of both normal condition and degraded condition are approximated by boosting GMM, the
confidence value, which indicates the performance of the machine (1—normal, 0—abnormal), will be calculated by the
overlap of the distributions following [32]:

CV ¼

R
f 1ðxÞf 2ðxÞdx̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

ðf 1ðxÞÞ
2 dx̄

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
ðf 2ðxÞÞ

2 dx̄
q , (23)

where f1 and f2 are the Gaussian mixture functions. If the two distributions overlap extensively, the confidence value will
be near 1, which means the performance of the machine is normal. Otherwise, if the two distributions rarely overlap, the
confidence value will be near 0, which means a certain abnormal situation happens.

3. An industrial case study of FCFT

3.1. System setup

Chiller system is a complicated system which contains many components such as compressor, condenser/evaporator,
water pump and others. Considering that the working load is subjected to change in different working conditions, the
monitoring of overall health status of chiller system is not a trivial task. In the FCFT, the whole test cycle is set to be 2 min.
The working load changes each 30 s from 25 to 100 percent at a 25 percent interval as Fig. 1 shows. There are six
accelerometers (IMI 623C01) installed on the housing of six bearings (channel 0 to channel 5) on the chiller. Channel 0 and
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Fig. 4. Hardware setup.

Fig. 5. Vibration data in normal condition.
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channel 3 are used for shaft performance monitoring. Channels 1, 2, 4, and 5 are used to monitor bearings ]1, ]2, ]3, and ]4,
respectively.

The structure of the hardware setup is shown in Fig. 4. National Instrument PXI-4472 is used for data acquisition to
obtain data from the six accelerometers simultaneously. The sampling rate is set to be 10 K/s for each channel. The data is
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Fig. 6. Vibration data in degraded condition.

Table 1
The OPC parameters and monitored objects.

Monitored object OPC parameters

Evaporator Return temperature

Supply temperature

Flow rate

Condenser Return temperature

Condense supply temperature

Compressor oil Oil temperature in separator

Oil temperature in compressor

Refrigerant circuit Suction pressure

Discharge pressure

L. Liao, J. Lee / Journal of Sound and Vibration 326 (2009) 894–908902
obtained for the whole cycle (2 min) of the FCFT. Figs. 5 and 6 show the raw vibration data for the six channels in normal
condition and degraded condition, respectively. The degraded condition here refers to an oil leakage problem on a day
when the FCFT test was carried out. Field engineers confirmed that it was not a complete failure but an abnormal condition.
Obviously, it is not an easy job to identify the performance of each component by just looking at the raw data.

The data logging system also obtains data from the Johnson controls OPC (object-linking—and—embedding for process
control) server of the chiller system through Ethernet. The sampling frequency is 4 Hz for each OPC parameter. The
monitored objects and the related OPC parameters are listed in Table 1. The OPC parameters in normal condition and
degraded condition are illustrated in Figs. 7 and 8, respectively.



ARTICLE IN PRESS

Fig. 7. OPC data in normal condition.

Fig. 8. OPC data in degraded condition.

L. Liao, J. Lee / Journal of Sound and Vibration 326 (2009) 894–908 903
3.2. Performance assessment results

In the case study, the training dataset and testing dataset of channel 5 (corresponding to bearing ]4) in normal condition
and degraded condition are used as an example to validate the proposed novel method described in Section 2. The normal
condition data is analyzed first as the baseline. WPA is used to extract the energy features from the vibration data. PCA is
then used to find the first two principal components which contain more than 90 percent of the variation information.
Those two principal components are used as the baseline feature space for channel 5 as plotted in Fig. 9.

The next step is using GMM to approximate the density distribution of the feature spaces. The number of mixtures is set
from 1 to 10 and the BIC scores of different number of mixtures are calculated by Eq. (12). The results are plotted in Fig. 10
which shows that the BIC score is highest when the number of mixture is 2. Therefore, the number of mixtures is set as 2 to
approximate the distribution of the feature space in normal condition.

The approximation results by GMM to the normal feature space are shown in Fig. 11.
After the baseline is set up, the same method can be applied to the newly obtained testing datasets both in normal

condition and degraded condition. The BIC score is highest when the number of mixture is 2 in normal condition. A GMM
with two mixtures is used to approximate the distribution of the first two principal components of normal feature space.
The approximated results combining with that of the baseline are plotted in Fig. 12. The BIC score is highest when the
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Fig. 9. First two principal components of the normal feature space of channel 5.

Fig. 10. BIC scores for normal feature space of channel 5.

Fig. 11. Results of GMM approximation to the normal feature space of channel 5.

L. Liao, J. Lee / Journal of Sound and Vibration 326 (2009) 894–908904
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Feature space distribution of testing dataset  

Feature space distribution of baseline dataset 

Fig. 12. Results of GMM approximation to the normal and baseline feature space of channel 5.

Feature space distribution of testing dataset 

Feature space distribution of baseline dataset 

Fig. 13. Results of GMM approximation to the degraded and baseline feature space of channel 5.

L. Liao, J. Lee / Journal of Sound and Vibration 326 (2009) 894–908 905
number of mixture is 1 in degraded condition. A GMM with one mixture is used to approximate the distribution of the first
two principal components of degraded feature space. The approximated results combining with that of the baseline are
plotted in Fig. 13.

As shown in Fig. 12, the distributions of the testing feature space and that of the baseline feature space extensively
overlap. By using Eq. (23), the calculated CV is 0.9527 which means the performance is normal. As shown in Fig. 13, the
distribution of the testing feature space deviates a little from that of the training dataset. By using Eq. (23), the calculated
CV is 0.8439 which means the performance is degraded.

The same datasets (baseline and testing data) are also used to validate the proposed density boosting method of GMM.
The maximum iteration step for the boosting GMM is set as 25. The maximum number of iteration steps for the EM
algorithm and the maximum number of mixtures of the GMM are set to be 50 and 10, respectively. The method using only
GMM (without boosting) is also tested on the dataset for 25 times. For each step/time, the data log likelihood is calculated
by Eq. (13). Figs. 14 and 15 show the comparison results for the normal condition and the degraded condition, respectively.
As the two figures show that no matter it is in normal condition or degraded condition, the boosting GMM method can
achieve higher data log likelihood than GMM, which means boosting GMM method represents the distribution of the
dataset with higher accuracy. In Fig. 15, the data likelihood achieved by GMM-only varies each time, which means the
performance of the boosting GMM is more stable than GMM whose convergence depends on the initial parameters.
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Fig. 14. Comparison of data log likelihood in normal condition for channel 5.

Fig. 15. Comparison of data log likelihood in degraded condition for channel 5.

Table 2
Confidence values in normal and degraded conditions.

Shaft Bearing ]1 Bearing ]2 Bearing ]3 Bearing ]4

Normal 0.9670 0.9925 0.9781 0.9656 0.9688

Degradation 0.8240 0.8032 0.7289 0.8397 0.8632

Evaporator Condenser Compress oil Refrigerant circuit

Normal 0.9969 0.9587 0.9952 0.9882

Degradation 0.8742 0.8938 0.7502 0.7302
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In this case, the boosting GMM method is applied to all the six channels for both normal condition and degraded
condition. Dataset of channel 0 and channel 3 are used to assess the performance of the shaft. The same method is also
applied to the OPC dataset without using WPA for signal processing, because the OPC data is considered as features directly.
The calculated confidence value for each component is listed in Table 2.

Table 2 presents the confidence values in degraded condition are lower than those in normal condition. After confirmed
with the mechanical technicians, the occurrence of the degradation condition is because of the oil leakage problem on the
day when the FCFT test was carried out. It is not a complete failure but an abnormal condition. It validated that the
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proposed machine performance degradation assessment method successfully detected the components’ performance
deviation from the normal condition before failure happens.
4. Discussion and future research

The proposed FCFT test and machine performance degradation assessment method are effective to identify the system
behaviors by monitoring the transient period between different working loads. Actually, from the OPC data shown in Figs. 7
and 8, there is no much difference between the normal condition and the degraded condition when the chiller is running at
100 percent working load (the end part of the data), while the OPC values show difference when the chiller is working at 25
percent working load (the beginning part of the data). If the test is carried out only when the chiller is running at 100
percent working load, nothing abnormal can be detected, while FCFT successfully detect the degradation condition in this
industrial case study. Not only for the chiller system, can the proposed method also be potentially applied to other
machinery systems.

If the proposed FCFT is carried out every day, a curve of the CV values can be obtained over time. The severe extent of the
system can also be evaluated by the trend or decreasing rate of the CV curve. If the system is still acceptable when the CV
becomes lower than the preset threshold (e.g. 0.2, which indicates a statistically significant shift from the baseline), the
baseline can be updated by using more data when the system is considered as working in normal condition (which
depends on the users’ tolerance of maintenance). If the system fails one day, besides the normal baseline, the same
boosting GMM method can be applied to set up another faulty baseline by using the data when the system is about to fail.
Then the CV can be determined by both the normal and faulty baselines. In future research, besides the signal during the
transient periods, the stationary signals can also be utilized for component faults diagnosis purposes when the CV drops to
an unacceptable level (e.g. 0.2).

Furthermore, using the component feature space as historical data to predict the future feature space is of great research
interest. Auto-regressive moving average model (ARMA) [33] and probabilistic neural network [34] are good candidate
algorithms for the prediction of the future space. Based on the predicted feature space, the proposed boosting GMM
method can be utilized to calculate the predicted CV from the overlap of the predicted feature space and the baseline
feature space. This predicted CV which can then be used as a machine performance degradation indicator for preventing
failure before it happens.
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